Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.016$
$w R$ factor $=0.040$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquatris(nitrato- $\left.\kappa^{2} O, O^{\prime}\right)$ bis(4-pyridone- κO)lanthanum(III)

In the mononuclear title compound, $\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], the $\mathrm{La}^{\text {III }}$ atom is ten-coordinate, with a coordination polyhedron made up of the O atoms of two 4-pyridone ligands, six O atoms of three O, O^{\prime}-chelating nitrate groups and two water molecules, the polyhedron approximating a dodecahedron. The molecule lies on a twofold rotation axis. A threedimensional network structure is formed by hydrogenbonding and $\pi-\pi$ stacking interactions.

Comment

4-Hydroxypyridine $(4-\mathrm{PyOH})$ is a bifunctional ligand that is capable of binding to metal centers and also forming classical hydrogen bonds (as both donor and acceptor) (Kawata et al., 1997). It exists in the tautomeric 4-pyridone form. In contrast to the many metal complexes of the related 2-hydroxypyridine, there are few reports of structures of complexes of 4hydroxypyridine or 4-pyridone (Masse \& Le Fur, 1998). We have recently reported the structures of two mononuclear Co complexes, one dimeric Cu complex and one catenated Ag complex, viz. $\left[\mathrm{CoCl}_{2}(4 \text {-pyridone })_{2}\right]$ (Gao, Lu, Huo, Zhao \& Zhao, 2004), $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)(4 \text {-pyridone })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)(\mathrm{Lu}, \mathrm{Gao}$, Huo, Zhang et al., 2004), $\left.\left[\mathrm{Cu}_{2} \text { (acetate) }\right)_{4}(4 \text {-pyridone) })_{2}\right](\mathrm{Lu}$, Gao, Huo, Zhao \& Zhao, 2004) and $[\mathrm{Ag}(4-\mathrm{PyO})(4-\mathrm{PyOH})]_{n}$ (Gao, Lu, Huo \& Zhao, 2004). When $\mathrm{La}^{\text {III }}$ interacts with the ligand, the resulting title mononuclear complex, $[\mathrm{La}(4-$ pyridone $)_{2}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], (I), has the metal center in a tencoordinate environment (Fig. 1).

(I)

The $\mathrm{La}^{\text {III }}$ ion is ten-coordinated by the O atoms of two 4pyridone ligands, six O atoms of three chelating nitrate ions and two water molecules in a docecahedral geometry (Fig. 2). The molecule lies on a twofold rotation axis. The $\mathrm{C} 1-\mathrm{C} 2$, $\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{C} 3-\mathrm{O} 1$ bond lengths are 1.362 (3), 1.351 (3) and

Received 27 October 2005 Accepted 31 October 2005 Online 5 November 2005

ORTEPII plot (Johnson, 1976) of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.]
1.278 (2) \AA; the distances are in agreement with those of a 4 pyridone form. The water molecules and the O atoms of nitrate ligands form extensive intermolecular hydrogen bonds (Table 2), connecting the molecules into a layer structure. There are $\pi-\pi$ stacking interactions between adjacent 4 pyridone rings, with a centroid-centroid separation of 3.789 (3) \AA; the $\pi-\pi$ stackings lead to a three-dimensional supramolecular network.

Experimental

Lanthanum trinitrate tetrahydrate ($3.97 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an aqueous solution of $4-\mathrm{PyOH}(1.05 \mathrm{~g}, 10 \mathrm{mmol})$. The solution was allowed to evaporate at room temperature, and colorless prismatic single crystals were isolated after five days. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{LaN}_{5} \mathrm{O}_{13}$: C $21.79, \mathrm{H} 2.56, \mathrm{~N} 12.71 \%$; found: C $21.76, \mathrm{H} 2.54, \mathrm{~N}$ 12.75%.

Crystal data

$\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=551.17$
Monoclinic, $C 2 / c$
$a=11.051$ (2) A
$b=8.9055$ (18) \AA
$c=19.203$ (4) \AA
$\beta=96.31$ (3) ${ }^{\circ}$
$V=1878.4$ (7) \AA^{3}
$Z=4$

Data collection

Rigaku R-AXIS RAPID
 diffractometer
 ω scan
 Absorption correction: multi-scan
 (ABSCOR; Higashi, 1995)
 $T_{\text {min }}=0.494, T_{\text {max }}=0.645$
 8972 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.040$
$S=1.24$
2150 reflections
139 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
The coordination dodecahedron of the La atom in (I). [Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.]

Figure 3
Packing diagram of the title complex, viewed along the b axis. The hydrogen bonds are shown as dashed lines.

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{La} 1-\mathrm{O} 1 w$	$2.5452(15)$	$\mathrm{La} 1-\mathrm{O} 5$	$2.6978(15)$
$\mathrm{La} 1-\mathrm{O} 1$	$2.3830(14)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.278(2)$
$\mathrm{La} 1-\mathrm{O} 2$	$2.6946(14)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.362(3)$
$\mathrm{La} 1-\mathrm{O} 4$	$2.6612(14)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.351(3)$
$\mathrm{O} 1 w^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 1 w$	$174.03(7)$	$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 4$	$71.41(6)$
$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 2$	$110.25(4)$	$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 5^{\mathrm{i}}$	$134.74(6)$
$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 2^{\mathrm{i}}$	$63.80(4)$	$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 5$	$75.34(6)$
$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 4^{\mathrm{i}}$	$115.57(5)$	$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 2^{\mathrm{i}}$	$47.15(5)$
$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 4$	$69.26(5)$	$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 5$	$118.39(5)$
$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 5$	$116.39(5)$	$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 5^{\mathrm{i}}$	$150.30(5)$
$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 5^{\mathrm{i}}$	$68.40(5)$	$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 2^{\mathrm{i}}$	$124.24(5)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 1$	$144.20(9)$	$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 2$	$143.27(5)$
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 1 w$	$83.79(7)$	$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 4^{\mathrm{i}}$	$83.82(7)$
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$94.37(7)$	$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 5$	$47.18(5)$
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2$	$72.05(6)$	$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 5^{\mathrm{i}}$	$65.69(5)$
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2^{\mathrm{i}}$	$75.21(6)$	$\mathrm{O} 5-\mathrm{La} 1-\mathrm{O} 5^{\mathrm{i}}$	$85.69(8)$
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 4^{\mathrm{i}}$	$140.92(6)$		
Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.			

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.85 (1)	2.27 (1)	3.087 (2)	161 (3)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 2^{\text {iii }}$	0.85 (1)	2.03 (1)	2.873 (2)	171 (3)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.85 (1)	2.51 (3)	3.0296 (16)	121 (2)
$\mathrm{N} 1-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {iv }}$	0.86	2.05	2.849 (2)	153

Symmetry codes: (ii) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iv) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.
The H atoms attached to C atoms and 4-pyridone N atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, and were refined in the riding-model approximation. The water H atoms were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

Gao, S., Lu, Z. Z., Huo, L. H. \& Zhao, H. (2004). Acta Cryst. C60, m651m653.
Gao, S., Lu, Z. Z., Huo, L. H., Zhao, H. \& Zhao, J. G. (2004). Acta Cryst. E60, m609-m610.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kawata, S., Breeze, S. R., Wang, S., Greedan, J. E. \& Raju, N. P. (1997). J. Chem. Soc. Chem. Commun. pp. 717-718.
Lu, Z. Z., Gao, S., Huo, L. H., Zhang, X., Zhao, H. \& Zhao, J. G. (2004). Acta Cryst. E60, m811-m813.
Lu, Z. Z., Gao, S., Huo, L. H., Zhao, H. \& Zhao, J. G. (2004). Acta Cryst. E60, m976-m978.
Masse, R. \& Le Fur, Y. (1998). Z. Kristallogr. New Cryst. Struct. 213, 114.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77281-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

